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Abslract We prerent here a technique for the calculation of mnfigwationally avenged 
quantities in the reciprocal k-space representation. such as the spectnl function and complex 
band structures. We apply the technique to AgPd alloys in conjunction with the tight-binding 
linexized muffin-tin orbital basis. We also indicate why the same technique is ideal for 
application to the more accunte screened KKR and allows us to go beyond the single-site 
coherent potential approximation and include multi-site effects such as short-ranged ordering 
and I d  lattice distortions due to size mismatch of the constituent atoms. 

1. Introduction 

In a recent letter [I ]  we introduced a computationally feasible technique for the calculation 
of configuration-averaged quantities, such as the density of states, for disordered binary 
alloys. We indicated that the technique allowed us to take into account coherent 
scattering from more than one site and consequently deal with effects such as short- 
ranged ordering [Z] and essential off-diagonal disorder due to local lattice distortions 
arising out of size mismatch of constituents. Since a central part of the technique required 
the use of the recursion method [3], it was essential first to represent the Hamiltonian 
in a hasis in which the representation is sparse. For this reason we chose to illustrate 
our method within the tight-binding linearized muffin-tin orbital (TB-LMTO) basis. Two 
aspects remained unsatisfactory. First, many physical properties require us to examine 
configuration averages of quantities which are expressed in terms of reciprocal space (k- 
space) representations, for example, spectral functions, if we want to compare with angle- 
resolved photoemission experimental data, or complex band structures, momentum densities 
and fuzzy Fermi surfaces which are probed in Compton scattering and positron annihilation 
experiments. Calculation of response functions also require configuration-averaged k-space 
Green functions [G(k,z)I,.  Second. there are often objections raised against the TB- 
LMTO itself, particularly against the most localized (the so-called 0) representation. The 
objections are related to the approximations involved, as we worked with the first-order fJ 
Hamiltonian. It would be therefore desirable if we extended the augmented-space recursion 
to overcome both these aspects. This is the main motivation behind the present work. 
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It should be noted that recursion in the k-space representation was carried out earlier 
on non-crystalline and disordered materials [4]. The novelty of the present work is the use 
of recursion in augmented space. 

2. Formulation 

Let us address the first drawback of our previous formulation. We shall start from the most 
localized TB-LMTO, first-order p representation of the alloy Hamiltonian: 

The P and I are projection and translation operators in the space Q, spanned by the tight- 
binding basis ( I R L ) )  and n~ is a random occupation variable which takes the value I if the 
muffin-tin labelled by R is occupied by an A-type atom, and is 0 otherwise. 

In the case where the disorder is homogeneous, i.e. if the probability distribution of 
the random variables {nR) is independent of R, configuration-averaged quantities are lattice 
translationally symmetric. This is generally the case for bulk properties in homogeneous 
alloys, but can break down, for instance, near the surface because of surface segregation 
which leads to an inhomogeneous concentration profile. This translation symmetry leads to 

[(k. LIG(z)I~‘, L ’ ) ] ~ ,  = 

O ( Z )  = (zZ- 7 f - I  

Z ) L L W C  - k’) 

which is the resolvent of the Hamiltonian. This is a random operator in the space Q,. 

as follows: 
The configuration average may now be expressed within the augmented-space formalism 

(2) 

The augmented-space formalism has been discussed in detail in several previous 
communications [5 ] .  We refer the readers to these publications and summarize here the 
main results. 

[(k, LIB(z)lk’, L’)],, = (k L Q (0Il(zZ- %-Ilk, L’Q (0)). 

The probability density of the random variables n~ is written as 

p ( n R )  = x8(nR - I )  + Y S ( ~ R )  = (-l/a)sm(tR I ( n d -  M R ) - ’  I t ~ )  (3) 

where x and y are the concentrations of the constituents A and B with x + y = 1; M R  is 
an operator in the space of configurations qR of the variable nR. This is of rank 2 and is 
spanned by the stules [ I  ? E ) ,  I L R ) ] :  

M R  = xPP +yPJ + f i (5 ;  +T:). (4) 
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is an operator which is constructed out of X by replacing all the random variables 
nR by the corresponding operators M R .  It is an operator in the augmented space Q = 
@ 8 fl: @ R .  The configuration space flz eR = Q is of rank ZN if there are N muffin-tin 
spheres in the system. A basis in this space is denoted by the cardinality sequence (C) = 
(RI, R2, . . . , Rc)  [ 11 which gives us the positions where we have a I J. ) configuration. The 
configuration (0) refers to that with a null cardinality sequence, i.e. one in which we have 
I t ) at all sites. 

Using equations (I), (2) and (4) we may rewrite the expression for the configuration 
average as 

(Ic .L@(0lld(A+B+P-S)-’dlk,  L @ ( 0 ) )  (5) 

where 

A = C A [ ( E  - ~ L ) / A L ] { Z @  PL @X} 
L 

and A ( V )  = X V ,  + yVg, i.e. the average of V ,  B ( V )  = ( y  - x) (VA - VB)  and 
c(v) = f i ( v A  - VB). 

We now note that since 

1Ic.L) =(I/.Jjji)Cexp(-iIc.R)IR,L) 
R 

in general such a basis in the augmented Ic-space has the form 

( l / f i )  Cexp( - ik .  R)IR, L @ IC]) 
R 

where {C) is the cardinality sequence {RI, R2.. . . , Rc}. We can write this in short-hand 
notation as Il(C)) where 11 stands for ( l / f i )  ER exp(-iA R)IR, L@. We have 

DIlIW) = A(A~’*)llWl) + c(A~/’)ll(RH = 111. 

The ket 11) is not normalized. We first write the above in terms of a normalized ket 11) = 
A(l/A)-’/211].  We may now rewrite (5) as 

(lI(E-A’+B+P-S‘)-’II) (6) 
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where 

A’ = { A ( ~ L / A L ) / A ( ~ / A L ) ) ~  

d’ = [ B [ ( E  - ~ L ) / A L ] / A ( ~ / A L ) }  E ’ P R O P L  8 Pf 
R L  

This equation is now exactly in the form in which the recursion method may be applied. 
At this point we note that the above expression for the averaged G(k.E)LL is exact. The 
recursion transforms the basis through a three-term recurrence: 

I@]) = 11) bn+tlh+l) = RIh) -anIhn) -bnl@n-l). (7) 

The averaged Green function can then be written as a continued fraction: 

b? 

b: E-a1 - 
bf E -a2 - - 

Since this can also be written in the form I / ( E  - E(k) - C(E, k)), the self-energy 
C(E, k) may also obtained from the continued fraction. The approximation involved has to 
do  with the termination of this continued fraction. The coefficients are calculated exactly up 
to a finite number of steps and the asymptotic part is replaced by a terminator. Haydock and 
co-workers [6] have carried out extensive studies of the errors involved and precise estimates 
are available in the literature. Haydock [7] has shown that if we cany out recursion exactly 
up to n steps, the resulting continued fraction maintains the first 2n moments of the exact 
result. Several terminators are available and we have chosen to use that of Lucini and 
Nex [8]. 

Before we go on to actual calculations, it is instructive to check several known results. 
For example, let us take a single s-band nearest-neighbour model, with disorder only in the 
diagonal terms. It has a simple Hamiltonian 

where x are the nearest-neighbour vectors on the underlying lattice, E has a binary 
distribution and V is not random. It is known thal within the CPA the self-energy is k 
independent. For this simple model, the recursion results can be explicitly written out: 

a1 = Vs(k) + Abz2 = W 2  

a2 = A’b3’ = ZV’ 

a3 = Ab4’ = (Z - 1)V2 + W 2  

a4 = 
Z(Z - l)V2A + W*(Vs(k)  - ZA’) 

Z(Z - 1 ) V 2 +  zwz 
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Here 

A = X E A  + Y E B  A’ = Y E A  + X E B  

s(k) = x e x p ( - i k .  x) W =  EA - EB)  
X 

where Z is the number of nearest neighbours. We note that {an, bn] up to n = 3 are the 
same as that of the CPA. There is no k dependence in these continued fraction coefficients. 
a4 onwards begins to differ from the CPA results and the k dependence begins at this stage. 
In an earlier work [9] the relation between moments and continued fraction coefficients was 
discussed in great detail using the idea of self-avoiding walks proposed by Haydock [7]. It 
was shown that the first closed self-avoiding walk in augmented space whose contribution 
to the averaged Green function is ignored in the CPA is of length eight. This leads to 
errors in moments higher than eight and its contribution begins at the fourth level of the 
continued fraction. Thus our results are consistent with the fact that the CPA self-energy 
is k independent, its first eight moments are correct and consequently any k-dependence in 
more accurate estimates of the self-energy should begin at moments higher than eight, i.e. 
at levels equal to or lower than the fourth in the continued fraction. Note also that in all 
lattices where symmetry implies that if x is a nearest-neighbour vector so is -x, s(k) and 
hence all continued fraction coefficients are real. 

It is important to note that the operators 2, L?’~ i’ are all projection operators in real 
space (i.e. unit operators in k-space) and act on an augmented-space basis only to change 
the configuration part (i.e. the cardinality sequence (C]): 

A’lllcl) = Aill(C1) 
g l l ( C ] )  = A2Il{C)) 
PllVl) = A,II(C& RI).  

if R E (Cl.0 otherwise 

The coefficients Aj-As can be obtained from the form of the operators given above. The 
remaining operator S is diagonal in k-space and acts on an augmented space only to change 
the configuration part: 

Here, the x are the nearest-neighbour vectors. The operation of the effective Eamiltonian 
is thus entirely in the configuration space and the calculation does not involve the space 
Q at all. This is an enormous simplification over the standard augmented-space recursion 
described earlier [l], where the entire reduced real-space part as well as the configuration 
part was involved in the recursion process. Earlier we had to resort to symmetry reduction 
of this enormous space in order to make the recursion tractable. Here the rank of only 
the configuration space is much smaller and we may further reduce it by using the local 
symmetries of the configuration space, as described in our earlier letter [I]. However, this 
advantage is offset by the fact that the effective Hamiltonian A’ - f l  - + s’ has an 
energy dependence in the second and third terms. This means that to obtain the averaged 
[G(k .  E ) ]  we have to carry out the recursion for each energy point. This was not a problem, 
as recursion at each energy point took a fraction of a second on a desktop 486 PC. 

Finally, in figure 1 we present the results for the spectral functions for AgmPdza alloy 
along the r-X direction. The reason for this choice is that both TB-LMTO-CPA [IO] 



8574 P Birwas et al 

.. 

... ,,,1 J W ,  
_1u ......... . _...________.............~ *’ 

Figure 1. The spectral densities for AggaPdB alloy in lhe T-X direction for (a) 5 (000). (6) 
F (fW) and ( E )  1 (100). 

(for the 75-25 alloy) and KKR-CPA [ 111 (for the 80-20 alloy) results are available. Our 
results are in good agreement with those for the KKR-CPA. The TB-LMTO-CPA seems 
to have more width with less sharp peaks in the spectral functions and consequently more 
width in the complex bands. This is particularly noticeable in the s-like peak at the r 
point. We cannot explain this difference, other than the fact that the TB-LMTO-CPA uses 
a methodology which starts from a complex energy value and then takes the limiting case 
onto the real energy axis. If the limit is not reached properly, an artificial imaginary part 
to the energy could give rise to an extra width. 

This brings us to the last point in our communication. We propose that the method is 
also eminently suitable for application to the screened KKR as well. The relevant KKR 
Green function over which we have to configuration average is 

i.e. 
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This equation is very similar to equation (5); S ( E )  is the structure matrix in the screened 
KKR representation. It is sparse and non-random, but energy dependent. z ( E )  is the single 
site scattering operator, which is random in a binary alloy. The augmented-space theorem 
will then give 

The two terms on the right-hand side of the equation can be obtained by two recursions, 
onestart ingfromII)=Il@)+II(Rt)andanotherfromII)=II~)-II(R]).  Theformofthe 
effective Hamiltonian is almost identical to the TB-LMTO and the effective Hamiltonian 
is energy dependent. Thus, once the KKR potential parameter and the screened structure 
matrix are obtained, the augmented-space recursion is no more complicated than the TB- 
JMTO discussed earlier. 

The aim of future work is to carry out the augmented-space recursion within both the 
TB-LMTO and screened KKR for an extensive comparison. Note that, as introduced earlier, 
both short-ranged order [2] and local lattice distortion effects [I21 can be introduced without 
difficulty within the formalism. 
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